Regulator of G-protein signaling 5 controls blood pressure homeostasis and vessel wall remodeling.
نویسندگان
چکیده
RATIONALE Regulator of G-protein signaling 5 (RGS5) modulates G-protein-coupled receptor signaling and is prominently expressed in arterial smooth muscle cells. Our group first reported that RGS5 is important in vascular remodeling during tumor angiogenesis. We hypothesized that RGS5 may play an important role in vessel wall remodeling and blood pressure regulation. OBJECTIVE To demonstrate that RGS5 has a unique and nonredundant role in the pathogenesis of hypertension and to identify crucial RGS5-regulated signaling pathways. METHODS AND RESULTS We observed that arterial RGS5 expression is downregulated with chronically elevated blood pressure after angiotensin II infusion. Using a knockout mouse model, radiotelemetry, and pharmacological inhibition, we subsequently showed that loss of RGS5 results in profound hypertension. RGS5 signaling is linked to the renin-angiotensin system and directly controls vascular resistance, vessel contractility, and remodeling. RGS5 deficiency aggravates pathophysiological features of hypertension, such as medial hypertrophy and fibrosis. Moreover, we demonstrate that protein kinase C, mitogen-activated protein kinase/extracellular signal-regulated kinase, and Rho kinase signaling pathways are major effectors of RGS5-mediated hypertension. CONCLUSIONS Loss of RGS5 results in hypertension. Loss of RGS5 signaling also correlates with hyper-responsiveness to vasoconstrictors and vascular stiffening. This establishes a significant, distinct, and causal role of RGS5 in vascular homeostasis. RGS5 modulates signaling through the angiotensin II receptor 1 and major Gαq-coupled downstream pathways, including Rho kinase. So far, activation of RhoA/Rho kinase has not been associated with RGS molecules. Thus, RGS5 is a crucial regulator of blood pressure homeostasis with significant clinical implications for vascular pathologies, such as hypertension.
منابع مشابه
Metalloproteinases, Mechanical Factors and Vascular Remodeling
Chronic increases in arterial blood flow elicit an adaptive response of the arterial wall, leading to vessel enlargement and reduction in wall shear stress to physiological baseline value. Release of nitric oxide from endothelial cells exposed to excessive shear is a fundamental step in the remodeling process, and potentially triggers a cascade of events, including growth factor induction and m...
متن کاملChanges in regulator of G protein signaling-4 gene expression in the spinal cord of adrenalectomized rats in response to intrathecal morphine
Introduction: Regulators of G-protein signaling protein negatively control G protein -coupled receptor signaling duration by accelerating Gα subunit guanosine triphosphate hydrolysis. Since regulator of G-protein signaling4 has an important role in modulating morphine effects at the cellular level and the exact mechanism(s) of adrenalectomy-induced morphine sensitization have not been fully cl...
متن کاملRegulator of G-protein signaling-5 induction in pericytes coincides with active vessel remodeling during neovascularization.
We identified regulator of G-protein signaling-5 (RGS-5) as an angiogenic pericyte marker at sites of physiologic and pathologic angiogenesis. In a mouse model of pancreatic islet cell carcinogenesis, RGS-5 is specifically induced in the vasculature of premalignant lesions during the "angiogenic switch" and further elevated in tumor vessels. Similarly, RGS-5 is overexpressed in highly angiogeni...
متن کاملModeling and investigating the effect of ultrasound waves pressure on the microbubble oscillation dynamics in microvessels containing an incompressible fluid (Research Article)
Understanding the dynamics of microbubble oscillation in an elastic microvessel is important for the safe and effective applications of ultrasound contrast agents in imaging and therapy. Numerical simulations based on 2D finite element model are performed to investigate the effect of acoustic parameters such as pressure and frequency on the dynamic interaction of the fluid-blood-vessel system. ...
متن کاملPregnancy reverses hypertensive remodeling of cerebral arteries.
Previous studies have shown that pregnancy prevents hypertensive remodeling of cerebral arteries. In the present study, we sought to determine whether pregnancy could reverse preexisting remodeling. Nonpregnant virgin Sprague-Dawley rats were treated with the NO synthase inhibitor nitro-l-arginine (0.5 g/L in drinking water) for 2 weeks before mating, after which treatment continued until late ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation research
دوره 112 5 شماره
صفحات -
تاریخ انتشار 2013